Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox).
نویسندگان
چکیده
Recent work published in the accompanying paper used a combination of 3D morphological reconstruction to define optical spread functions and heat transfer physics to study how external heat energy would reach the sensory membrane within the facial pit of pitvipers. The results from all of the species examined indicated asymmetric directional sensitivity, e.g. the pit would preferentially respond to stimuli located below and behind the snake. The present study was intended as a test of these findings through a quantitative neurophysiological analysis of directional sensitivity in the facial pit of the western diamondback rattlesnake, Crotalus atrox. An infrared emitter was positioned through a coordinate system (with varying angular orientations and distances) and the response it evoked measured through neurophysiological recordings of a trigeminal nerve branch composed of the afferents from the sensory membrane of the facial pit. Significant differences were found in the strength of the membrane's neural response to a constant stimulus presented at different orientations (relative to the facial pit opening) and over different distances. The peak sensitivity (at 12 deg above and 20 deg in front of the facial pit opening) was in good agreement with the predicted directional sensitivities based on optical spread functions and 3D topography. These findings support the hypothesis that the topography, and functional performance, of the facial pit has undergone an adaptive radiation within the pit vipers, and that differences in the behavioral ecology of the pit vipers (i.e. terrestrial versus arboreal) are reflected within the facial pits.
منابع مشابه
Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes.
Pitvipers (Viperidae: Crotalinae) possess unique sensory organs, the facial pits, capable of sensing subtle fluctuations in thermal radiation. Prey acquisition has long been regarded as the sole function of the facial pits. However, the ability to sense thermal radiation could also direct thermoregulatory behavior by remotely sensing nearby surface temperatures. Using a series of behavioral are...
متن کاملHeat in evolution's kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae).
Pitvipers (Viperidae: Crotalinae) possess thermal radiation receptors, the facial pits, which allow them to detect modest temperature fluctuations within their environments. It was previously thought that these organs were used solely to aid in prey acquisition, but recent findings demonstrated that western diamondback rattlesnakes (Crotalus atrox) use them to direct behavioral thermoregulation...
متن کاملResponse of western diamondback rattlesnakes Crotalus atrox to airborne sounds.
In order to test the hypothesis that snakes can not only perceive airborne sounds, but also respond to them, an acoustic isolation chamber was designed and constructed to perform best within the 150-450 Hz range in which snakes perceive sound. Suspended within this acoustic chamber was a steel mesh basket designed to minimize the potential for groundborne vibrations. A synthesized tone was crea...
متن کاملThe Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes
The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-n...
متن کاملUnique temperature-activated neurons from pit viper thermosensors.
Rattlesnakes, copperheads, and other pit vipers have highly sensitive heat detectors known as pit organs, which are used to sense and strike at prey. However, it is not currently known how temperature change triggers cellular and molecular events that activate neurons supplying the pit organ. We dissociated and cultured neurons from the trigeminal ganglia (TG) innervating the pit organs of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 15 شماره
صفحات -
تاریخ انتشار 2012